therefore u need that parametric view of your circle:
(r*cos(t)+x0,r*sin(t)+y0)
else you need the distance/2 between A and B, the "rotation point". at the start of ellipse events, there must be
xk=r*cos(t0)+x0
yk=r*sin(t0)+y0
if this is correct u need
tan(startAngle)=sin(t0)/cos(t0)
for the following frames.
when u got this, the new point of C is
x= radius*cos(endAngle)
y= radius*sin(endAngle)
If u speak german, this might help you:
uni-protokolle.de/foren/viewt/45551,0.html
for instance:
t0=10?=Pi/18
t1=120?=2/3*Pi
(1,2)=(2*cos(t0)+x0; 2*sin(t0)+y0)
x0=1-2*cos(Pi/18 )=-0,969615506
y0=2-2*sin(Pi/18 )=1,652703645
target point:
xk=-1,969615506
yk=3,384754453